Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin‐mediated mitophagy

نویسندگان

  • Davor Ivankovic
  • Kai‐Yin Chau
  • Anthony H. V. Schapira
  • Matthew E. Gegg
چکیده

Impairment of the autophagy-lysosome pathway is implicated with the changes in α-synuclein and mitochondrial dysfunction observed in Parkinson's disease (PD). Damaged mitochondria accumulate PINK1, which then recruits parkin, resulting in ubiquitination of mitochondrial proteins. These can then be bound by the autophagic proteins p62/SQSTM1 and LC3, resulting in degradation of mitochondria by mitophagy. Mutations in PINK1 and parkin genes are a cause of familial PD. We found a significant increase in the expression of p62/SQSTM1 mRNA and protein following mitophagy induction in human neuroblastoma SH-SY5Y cells. p62 protein not only accumulated on mitochondria, but was also greatly increased in the cytosol. Increased p62/SQSMT1 expression was prevented in PINK1 knock-down cells, suggesting increased p62 expression was a consequence of mitophagy induction. The transcription factors Nrf2 and TFEB, which play roles in mitochondrial and lysosomal biogenesis, respectively, can regulate p62/SQSMT1. We report that both Nrf2 and TFEB translocate to the nucleus following mitophagy induction and that the increase in p62 mRNA levels was significantly impaired in cells with Nrf2 or TFEB knockdown. TFEB translocation also increased expression of itself and lysosomal proteins such as glucocerebrosidase and cathepsin D following mitophagy induction. We also report that cells with increased TFEB protein have significantly higher PGC-1α mRNA levels, a regulator of mitochondrial biogenesis, resulting in increased mitochondrial content. Our data suggests that TFEB is activated following mitophagy to maintain autophagy-lysosome pathway and mitochondrial biogenesis. Therefore, strategies to increase TFEB may improve both the clearance of α-synuclein and mitochondrial dysfunction in PD. Damaged mitochondria are degraded by the autophagy-lysosome pathway and is termed mitophagy. Following mitophagy induction, the transcription factors Nrf2 and TFEB translocate to the nucleus, inducing the transcription of genes encoding for autophagic proteins such as p62, as well as lysosomal and mitochondrial proteins. We propose that these events maintain autophagic flux, replenish lysosomes and replace mitochondria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5

The kinase PINK1 and ubiquitin ligase Parkin can regulate the selective elimination of damaged mitochondria through autophagy (mitophagy). Because of the demand on lysosomal function by mitophagy, we investigated a role for the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in this process. We show that during mitophagy TFEB translocates to the nucleus and displays ...

متن کامل

PINK1-Parkin-Mediated Mitophagy Protects Mitochondrial Integrity and Prevents Metabolic Stress-Induced Endothelial Injury

Mitochondrial injury and dysfunction, a significant feature in metabolic syndrome, triggers endothelial cell dysfunction and cell death. Increasing evidence suggests that mitophagy, a process of autophagic turnover of damaged mitochondria, maintains mitochondrial integrity. PINK1 (phosphatase and tensin homolog (PTEN)-induced putative kinase 1) and Parkin signaling is a key pathway in mitophagy...

متن کامل

Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin

To minimize oxidative damage to the cell, malfunctioning mitochondria need to be removed by mitophagy. In neuronal axons, mitochondrial damage may occur in distal regions, far from the soma where most lysosomal degradation is thought to occur. In this paper, we report that PINK1 and Parkin, two Parkinson's disease-associated proteins, mediate local mitophagy of dysfunctional mitochondria in neu...

متن کامل

PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding

Genetic studies indicate that the mitochondrial kinase PINK1 and the RING-between-RING E3 ubiquitin ligase Parkin function in the same pathway. In concurrence, mechanistic studies show that PINK1 can recruit Parkin from the cytosol to the mitochondria, increase the ubiquitination activity of Parkin, and induce Parkin-mediated mitophagy. Here, we used a cell-free assay to recapitulate PINK1-depe...

متن کامل

Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson’s disease

Therapeutic targets are needed to develop neuroprotective treatments for Parkinson's disease (PD). Mitophagy, the selective autophagic elimination of dysfunctional mitochondria, is essential for the maintenance of mitochondrial integrity and is predominantly regulated by the PINK1/Parkin-mediated pathway. Loss of function mutations in Parkin and PINK1 cause an accumulation of dysfunctional mito...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2016